MSE Bounds With Affine Bias Dominating the CramÉr-Rao Bound
نویسنده
چکیده
In continuation to an earlier work, we further develop bounds on the mean-squared error (MSE) when estimating a deterministic parameter vector 0 in a given estimation problem, as well as estimators that achieve the optimal performance. The traditional Cramér–Rao (CR) type bounds provide benchmarks on the variance of any estimator of 0 under suitable regularity conditions, while requiring a priori specification of a desired bias gradient. To circumvent the need to choose the bias, which is impractical in many applications, it was suggested in our earlier work to directly treat the MSE, which is the sum of the variance and the squared-norm of the bias. While previously we developed MSE bounds assuming a linear bias vector, here we study, in the same spirit, affine bias vectors. We demonstrate through several examples that allowing for an affine transformation can often improve the performance significantly over a linear approach. Using convex optimization tools we show that in many cases we can choose an affine bias that results in an MSE bound that is smaller than the unbiased CR bound for all values of 0. Furthermore, we explicitly construct estimators that achieve these bounds in cases where an efficient estimator exists, by performing an affine transformation of the standard maximum likelihood (ML) estimator. This leads to estimators that result in a smaller MSE than ML for all possible values of 0.
منابع مشابه
Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér-Rao Bound
One of the prime goals of statistical estimation theory is the development of performance bounds when estimating parameters of interest in a given model, as well as constructing estimators that achieve these limits. When the parameters to be estimated are deterministic, a popular approach is to bound the mean-squared error (MSE) achievable within the class of unbiased estimators. Although it is...
متن کاملUniformly Improving the Cramér-Rao Bound and Maximum-Likelihood Estimation
An important aspect of estimation theory is characterizing the best achievable performance in a given estimation problem, as well as determining estimators that achieve the optimal performance. The traditional Cramér-Rao type bounds provide benchmarks on the variance of any estimator of a deterministic parameter vector under suitable regularity conditions, while requiring a-priori specification...
متن کاملCovariance , Subspace , and Intrinsic Cramér - Rao Bounds Steven
Cramér-Rao bounds on estimation accuracy are established for estimation problems on arbitrary manifolds in which no set of intrinsic coordinates exists. The frequently encountered examples of estimating either an unknown subspace or a covariance matrix are examined in detail. The set of subspaces, called the Grassmann manifold, and the set of covariance (positive-definite Hermitian) matrices ha...
متن کاملMisspecified Cramér-rao bounds for complex unconstrained and constrained parameters
In this paper, a generalization of the Misspecified Cramér-Rao Bound (MCRB) and of the Constrained MCRB (CMCRB) to complex parameter vectors is presented. Our derivation aims at providing lower bounds on the Mean Square Error (MSE) for both circular and non-circular, MS-unbiased, mismatched estimators. A simple toy example is also presented to clarify the theoretical findings.
متن کاملNew Cramer-Rao-Type Bound for Constrained Parameter Estimation
Non-Bayesian parameter estimation under parametric constraints is encountered in numerous applications in signal processing, communications, and control. Mean-squared-error (MSE) lower bounds are widely used as performance benchmarks and for system design. The well-known constrained Cramér-Rao bound (CCRB) is a lower bound on the MSE of estimators that satisfy some unbiasedness conditions. In m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 56 شماره
صفحات -
تاریخ انتشار 2008